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p The motivation for a system-based approach stem from the limited results
associated with the undirected application of low level image processing tech-
niques in the extraction of such features and environmental objects. Objects
such as roads and rivers are semantic entities whose extraction requires contex-
tual and object-specific knowledge which cannot be easily incorporated into, for
example, low level filtering operations.

In our work, we reviewed and implemented several edge, region, and shape
extraction routines for application upon SAR aerial imagery. We evaluated their
performance and determined which are valuable for integration into a general
system. These implemented routines for edge extraction are: The Canny opera-
tor, Burt's pyramid, variants of the Hough transform, gradient-based and edge-
fragment-based linking. For region extraction: ID feature histogram-based seg-
mentation, Burt's Hierarchical Discrete Correlation, object based texture
classification over image sub-areas, Kohler's algorithm, and plurality updating.
For shape characterization: recursive line fitting, chamfer-based medial axis
transform, and basic shape measures.

F We also designed and partially implemented the Image Structure Data Base
(ISDB). This is a basic system component for representing processing results and
extracted image structures. We considered a variety of techniques for represent-
ing the properties of environmental objects such as roads and rivers in SAR
imagery. We have organized the SAR object knowledge into a network of feature

attributes and programmed finders.

We have used the components from the ISDB and implemented image pro-
cessing routines to evaluate several processing scenarios for the extraction of

* . roads, rivers, and region boundaries. This has demonstrated a capability for
* extracting roads, rivers and region boundaries from SAR imagery using

automated processing techniques (selected in an interactive fashion).
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1. INTRODUCTION

This document is the final report on a research effort undertaken by

Advanced Information & Decision Systems (AI&DS) as a partial fulfillment of

U.S. Army contract #DACW72-84-C-0014 for the U.S. Army Engineer Topo-

graphic Laboratories. The effort is focused on developing automated techniques

for extracting linear features (e.g., roads, rivers, boundaries between regions, etc.)
from aerial scenes imaged by a synthetic aperture radar (SAR) imaging sensor.

This project is a Phase I effort in the government's Small Business Innovative

Research (SBJR) program. It is directed toward analyzing the feasibility of

automated linear feature extraction techniques and developing a system concept

that can be prototyped as part of a follow-on Phase H effort.

1.1 EXECUTIVE SUMMARY

An increasingly important task facing numerous government and DoD-

3 agencies is the ability to automatically analyze aerial images. The applications

include a variety of intelligence and surveillance tasks that use a variety of image

sensors. This report summarizes a feasibility study performed by AI&DS to

determine the requirements for the automated extraction of linear features such

* as roads, rivers, and environmental region boundaries from SAR aerial imagery.

The effort has involved determining effective processes for extracting such

features by analyzing and testing a variety of algorithms and techniques. This

work has provided the necessary basis for the implementation of an intelligent,

automated system in Phase 11 of this research. A general vision system for linear

feature extraction has been designed and development of the components of the

system have been initiated. The design provides a general framework that can be

extended to the automated analysis of a wide range of other SAR (and other sen-

sor) objects.

The primary motivation for such a system-based approach stems from the

limited results associated with the undirected application of low level image pro-
cessing techniques in the extraction of such features and environmental objects.

Objects such as roads and rivers are semantic entities whose extraction requires

contextual and object-specific knowledge which cannot be easily incorporated
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into, for example, low level filtering operations. Our work has made it clear that

a general and expandable system will have to incorporate processing which

reflects the actual reasoning involved in expert SAR image interpretation.

The major accomplishments of this study have been to:

- 1) Develop a general system architecture for processing aerial SAR

imagery. The design is focused around two central data bases that

maintain image structures and hypotheses. These data bases are used

by the system's various processing algorithms to review previous ana-

lyses and to store new results and are used by control algorithms to

intelligently and opportunistically select image analysis activities.

2) Review and implement several edge, region, and shape extraction rou-
t tines for application upon SAR aerial imagery. Their performance was

evaluated and their value for integration into a general system was

analyzed. This work is summarized in Section 4 of this report. These

implemented routines for edge extraction are:

e the Canny operator

e the Burt's pyramid

e variants of the Hough transform

* e gradient-based linking

e edge-fragment-based linking

For region extraction:

e 1D feature histogram-based segmentation

@ Burt's Hierarchical Discrete Correlation

a object based texture classification over image sub-areas

9 Kohler's algorithm

e plurality updating

For shape characterization:

1-2



* recursive line fitting

* chamfer-based medial axis transform

e basic shape measures

* extensions to shape extraction using chamnfering

* local, iterative process to determine points of significant curva-

ture

3) Design and partially implement the Image Structure Data Base (ISDB).

This is a basic system component for representing processing results and

extracted image structures. This work is summarized in Section 3 of

this report.

4) Consider a variety of techniques for representing the properties of

environmental objects such as roads and rivers in SAR imagery. The

SAR object knowledge was organized into a network of feature attri-

butes and programmed finders. Automatic generation of these from

world knowledge and a priori models was considered. This work is sum-

* marized in Section 5.

5) Use the components from the ISDB and implemented image processing

routines, to evaluate several processing scenarios for the extraction of

roads, rivers, and region boundaries. This has demonstrated a capabil-

* ity for extracting roads, rivers and region boundaries from SAR imagery

using automated processing techniques (selected in an interactive

fashion). This work is described throughout this report.

8) Design segmentation and bottom-up processing in a moduler, rule-based

form to allow for intelligent control based upon strategies and object

models. This work is summarized in Section 4.

7) Obtain a better understanding of the nature of SAR aerial imagery and

its requirements for interpretation.

8) Study relevant work on hypothesis management and evidential reason-

ing.

u 1-3



9) Gain considerable experience with LISP machines and ZETA-LISP for

implementing image processing routines, semi-autonomous vision sys-

U temns, and user interfaces.

1.2 PROBLEM OVERVIEW

Imaging radar sensors provide all-weather, cloud penetration capability for

a variety of applications. Technical capabilities now allow enormous volumes of

such imagery to be automatically produced in relatively short periods of time.

However, the current methods for analysis and interpretation of radar imagery

largely consist of manual examination by human experts. As the quantity of
imagery expands, the requirements for timely and efficient feature classification

and the scarcity of radar image interpreters point to the need for an automated
system for feature detection and classification.

Linear features such as roads, rivers, bridges, and railroads are major land-

marks in such imagery and extracting and analyzing such features are a prere-

quisite for most analysis applications. Traditional linear feature extraction tech-

niques (edge detection and region segmentation) tend to perform adequately for

low noise, high resolution visible imagery, and in the generation of preprocessed

results for evaluation by a human. However, the relatively poor quality and the

complexity of the observed scenes in radar imagery make these feature extraction

techniques less effective.

Hence, the ability to automatically detect and analyze linear features has

major payoffs for numerous applications. Technology to provide such an

automated capability is also emerging from the fields of image understanding (LU)
and artificial intelligence (Al). Such a system can incorporate knowledge about

the scene and use context (from the image or external sources such as digital ter-

rain maps or terrain object models) to intelligently guide and interpret the exploi-

tation process. It can also be organized to reflect the actual interpretation stra-

tegies employed by analysts for completely automatic processing or as an intelli-

gent, interactive processing aid.

1L-4



1.3 REPORT OUTLINE

5 Section 2 contains an overview of the system architecture briefly describes

each major component, and presents an example processing scenario.

Section 3 contains a description of the Image Structure Data Base (ISDB).
The I5DB provides the system's basic representation of system processing and

results. The type of objects that the ISDB supports, its relation to other system

components, the format of queries over this data base, and how the ISDB is

implemented using flavors in ZETA-LISP are described.

Section 4 contains summaries and results from the different segmentation

and shape description procedures implemented. Segmentation rules which allow

these routines to be applied in a task directed manner are also described.

F Section 5 describes the representations of world objects and their appear-

ance in SAR imagery. Two basic types are presented: Feature Vectors and Pro-

grammed Finders. The implications of these representations for the system

hypothesis formation and system control activities are discussed.

Section 8 contains recommendations for future work.

Section 7 contains the bibliography.

a1-



2. A VISION SYSTEM FOR SAlt IMAGE FEATURE INTERPRETATION

2.1 MOTIVATION

We have two basic motivations for developing a general vision system for

SAR imagery interpretation. First, undirected application of lower level image
processing techniques will not reliably extract semantically defined world objects

like roads, rivers, and bridges. An explicit model of these objects is necessary to

direct the application of segmentation procedures and to interpret their results.

This requires a system which can represent the properties of world objects to

infer their appearance in imagery and which can also apply segmentation

r knowledge in a flexible, context directed fashion.

Our other major motivation is to develop a general and extendible worksta-
tion for SAR image interpretation as the basis of our system development. This

* workstation will support a wide range of tasks: the interactive exploration of

imagery; the development and application of image processing operations; and

editing the object representations and processing rules used in the autonomous

system.

2.2 SYSTEM OVERVIEW

The general system architecture is shown in Figure 2-1. It consists of two
core data bases: the Image Structure Data Base (ISDB) and the Hypothesis/Task

Data Base (HTDB). Associated with these data bases are controllers and user

interfaces for investigating their contents and status. Surrounding them are the
three different system components which access and update the data bases: The

k Segmentation Knowledge Source, the SAR Object Knowledge Source, and the

System Controller. In general, the interpretation process consists of the applica-

tion of rules and object format descriptions to organize entities in the core system

data bases into verifiable hypotheses that correspond to objects and significant
I' image structures.

2-1
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2.2.1 Image Structure Data Base

3 The Image Structure Data Base (ISDB) represents image processing results

and relationships. It consists of several things: images; image registered objects,

such as curves, regions, and points; non-image registered objects such as histo-

grams, tables, and networks; the Processing Relationship Structure (PRS) which

keeps track of the derivation of objects in the ISDB; and a library of functions

and methods for making queries over the ISDB and which form a basic vocabu-

lary for the actions of the other system components.

Entities are dynamically added to the ISDB during the interpretation pro-

cess. This often involves the results from procedures applied to selected image

areas, as in using high frequency edge operators at selected locations during fine
edge tracking. This conditional application of image processing routines is indi-

P" cated by the arrow from the Segmentation Knowledge Source to the arrow from

the image to the ISDB. The ISDB also represents the results of several different
types of processing for edge and region extraction. Associated with each object is

the type of process that extracted it and the relevant parameters. The data base

Ssupports the results of image processing at multiple levels of spatial resolution in

pyramid data structures or results from operators of different widths.

Interactions with the ISDB take the form of queries for detecting particular

image events or relations. These queries are interpreted into the primitive attri-

butes and relations used in the data base and are implemented in a library of

functions and methods associated with the ISDB. For example, finding roads and

shadowed embankments can involve extracting all long lines that are near each

other, have similar orientations and are adjacent to the same set of dark regions.

Note that it is important to consider, in the interpretation of queries, what attri-

butes such as LONG and PARALLEL map onto with respect to particular

parameter ranges for attributes of structures in the ISDB. There are also

significant efficiency considerations with respect to the order in which to extract

things (Since there may be fewer long lines than there are dark regions).

Results from queries to the ISDB can be displayed graphically and form the

basis of a user interface. Section 3 greatly expands the discussion of the ISDB.r

2-
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2.2.2 Hypothesis/Task Data Base and Manager

p The recognition of objects and more complicated image structures involves

grouping operations over the entities in the ISDB and the hypothesis/task data

base (HTDB). These operations are specified by Segmentation Rules and by the

format of object descriptions in the representations of generic SAR objects. For

example, one simple segmentation rule joins lines of similar orientations with

nearly adjacent endpoints together. At an object specific level, a road network is

the grouping of extracted road segments that are connected together. The basic

results of system processing is the set of hypotheses in the HTDB.

The system's interpretations of how image features are grouped or analyzed
are represented by hypotheses. Each hypothesis is represented in a common

F4 fashion by a symbol and a set of properties that describe the hypothesis. When a

hypothesis is generated by the system, it is said to be "instantiated" (an instance

of the hypothesis has been found). The properties of the hypotheses include

information about the type of hypothesis (e.g., these line segments form a road

network, this region is a river, etc.), pointers to the objects being grouped, the

strength or certainty of the system's belief in the hypothesis, and the specific

information about the objects grouped or analyzed by the hypothesis.

The HTDB consists of* an agenda that orders the current hypotheses in
* terms of the importance of their verification. The order of hypotheses on this

agenda is controlled by several factors: how many hypotheses are dependent

upon them, the extent of image areas covered by image structures which

correspond to the hypotheses, and the global system mode. The ranking of

hypotheses on the agenda is itself a rule directed activity. Some of the opera-

tions associated with hypothesis instantiation involve task sequences or opera-

tions that are performed (e.g., invoking a segmentation procedure). For unifor-

mity, these tasks are also associated with hypotheses in the data base and are

ordered on the agenda.

The hypothesis manager determines conflicts in instantiations of hypotheses

and evaluates the relative certainty of instantiated hypotheses. This involves

C monitoring which image structures have not been associated with an object

instantiation. This is critical to determining which hypotheses need further ela-

boration, which should be instantiated, and the global correctness of an interpre-

tation. There will be a graphics-based user interface to the HTDB which enables

2-4
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displays of the state of the interpretation and interactively determines which

operations produced a particular hypothesis and the contexts in which it is valid.

2.2.3 Segmentation Knowledge Source

The Segmentation V 'cwledge Source consists of rules and strategies that

MP direct the extraction of ii 4e structures from the raw images. These are used in

two basic modes. One is the b.ttom-up or data-directed mode wherein the rules

extract image structures based upon general perceptual criteria, such as size,

regularity of shape and symmetry. The other is a top-down or model directed

mode in which the rule application is directed or biased by attempting to instan-

tiate particular types of objects or world relationships. The Segmentation

Knowledge Source consists of a library of routines for edge, region, texture, and

shape extraction procedures which serve as its basic actions.

Some of the segmentation rules reflect Gestalt goodness-of-form measures in

the formation of regions and contours. Simple examples are grouping texture ele-

ments together into connected regions and linking edges together under various

3 shape constraints. This knowledge tends to be non-semantic and thus object

independent. Other segmentation rules are involved in determining the types of

image processing operations to apply to an image given a description of the type

of information to be extracted. Other segmentation rules extract and focus pro-

cessing on significant image structures such as those that are large and homo-

geneous, or globally connected, or straight, or having constant curvature, or are

much different than what is surrounding them. These rules also determine the

relations, such as intersection and adjacencies, among such interesting image

structures.

The system diagram does not completely describe the relation between the

Segmentation Rules and the SAR Object Knowledge Source. The SAR Object

Knowledge Source refers to image structures and hypothesis that the Segmenta-

tion Rules produce or extract. It also can invoke the Segmentation Rules in

attempting to instantiate objects. Thus, the shape and contrast of a country

road is specified as queries to the ISDB or could involve invoking a segmentation

rule for boundary tracking that is parameterized with contrast and curvature cri-

teria reflecting a country road. In such model-driven processing particular seg-

mentation rules can be applied in restricted image areas to determine predicted

t. 2-5
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image structures or relations.

3 2.2.4 SAR Object Knowledge

Generic SAR object knowledge describes the image properties of image

objects such as rivers, roads, bridges, etc. in their various forms, and indicates

inter-relationships between the objects. There are many alternative representa-

tions of such knowledge based upon such things as object-based descriptions, rule

systems, and predicate logic formulations. We have concluded that these choices

are generally interchangeable and that the fundamental question is what is

represented and how it is organized. For example, the distinguishing characteris-

tics, especially for linear features, are often contextual and involve the relations

among instantiated objects. Examples would be the support from an instantiated

road-network to enhance/infer the identity of an ambiguous line segment as
being a road. This implies the need for representing nested classes of objects to

avoid the combinatoric difficulties of describing every possible relationship among

all objects. Ln addition, a representation should support basic class inheritance,

similarity, and part-of component relations among objects.

We found it useful to consider a sequence of progressively complicated

object representations. A basic one is the use of feature vectors to describe

objects. In their simplest form, they are a list of required attributes for some

p object to be uniquely identified. Feature Vectors correspond to simple queries to

the ISDB and the HTDB specific to a particular object or relationship, such as a

river segment having particular shape, intensity, and textural properties. Feature
vectors can be extended to a frame-like representation wherein the vector com-

ponents are treated as frame slots for pointers to other frames describing objects

and relations. Next would come programmed finders associated with particular

objects corresponding to a framed-based representation with procedural attach-

ments. These are a more general object based representation with several pro-

cedural attachments, such as explicit strategies for instantiation of an object;

predicted adjacency and connectivity properties, and explicit rules for evaluating

the certainty of an instantiated hypothesis from distinguishing conditions.

Finally, a general reasoning and modeling system would be able to generate and

U parameterize specific finders from environmental descriptions of objects.

2-B



We also distinguish between generic and specific SAR object knowledge.
Specific SAR object knowledge represents actual instances of objects in the

S environment as might be determined from a terrain map. The availability of
such information provides many strong constraints on the range of potential
interpretations for a given object due to restrictions on its image appearance.
These constraints considerably simplify the required representation and inference

techniques.

2.2.5 System Controller

The system controller has several high-level executive tasks. One is to
interpet user requests into operations that can be performed by the system. It
also contains explicit knowledge about global modes of processing such as how to

F- initialize the system for particular types of imagery.

The System Controller acts as an interface between a user and the totally

automated version of the system by interpreting tasks into activities of the Seg-

mentation and SAR object knowledge sources. It contains meta-knowledge for
S different global modes of system processing and monitors the status of an

interpretation from the set of instantiated hypotheses and their evaluated cer-

tainties. This enables it to determine when the system is stuck and the focus of

attention requires alteration or a different mode of processing is required.

Finally, it should be apparent that control is distributed through-out this
system. In particular, there is control associated with the instantiation of the

generic object knowledge and the segmentation rules. Each monitors the image

structure and hypothesis space data bases along with particular foci-of-attention

established by the hypothesis manager and or the system controller in determin-

ing which rules or objects to instantiate.

2.3 PROCESSING SCENARIO

To better understand the components and implications of our system

design, we now consider a simulated scenario, based upon interactive use of ISDB
[ and the image processing techniques we implemented. Initially the system is

presented with the image in Figure 2-2 and no a priori information except that

this is an aerial SAR image consisting of terrain features and objects for which
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Figure 2-2: Example SAR Image: ETLS
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the system has models. In this situation, initial processing is almost totally

data-driven until object models can be hypothesized and aid in generation of

U predictions. This is represented as an explicit mode of processing by the system

controller, biasing segmentation processing towards extracting large interesting

image structures, which can be accessed by the SAR Object Knowledge Source to

instantiate object hypothesis, and generate predictions from expert world object

- relations and compatibilities. Other processing modes would be for verification of

a detailed terrain map and image-to-map registration.

The first stages of processing are directed by segmentation rules that

extract and recognize interesting image structures. These extract such things as

long connected straight curves at several spatial frequencies, and large regions of

homogeneous characteristics. There are explicit criteria of interesting structures,

and the system will continue to apply related segmentation rules until a sufficient

number of such structures are generated and distributed uniformly across the

image. Interesting structures also involve relationships among themselves, such

as repetition, symmetry, being parallel, or meeting at right angles. Some of the

structures involve global shape characteristics such as curve segments being

* organized in grids or a radial pattern.

Such segmentation rules generate the initial structures seen in Figures 2-3

through 2-6. Figure 2-3 shows the long connected edges extracted at several

different spatial frequencies. Figure 2-4 shows the linear segment approximations

to these curves. Figure 2-5 shows the histogram with respect to intensity which

was interesting because of its clear bimodality and correspondence to large

regions in the image. Figure 2-8 shows the extracted long connected segments.

- Each of these extracted interesting structures correspond to entities and

relationships in the ISDB. Each such structure is also instantiated as a

hypothesis of type INTERESTING-DMAGE-STRUCTURE in the HTDB with

associated attributes describing how it was extracted and by what criteria it is

interesting. The importance of the extracted structures on the Agenda is deter-

mined by attributes such as size, and potential attachments to SAR object for-

mats.

r When a sufficient number of interesting image structure hypothesis are gen-

erated, the SAR object knowledge source begins generating object hypothesis by

matching attributes of the interesting structures and those associated with the

2-9
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Figure 245: Intensity Histogram and Extracted Image Areas
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Figure 2-6: Long Connected Contours

2-13

"°jU

.- -.-. ,......'...'..',_.,-...." .... ,....' ...,,." ... .'-'.',, '.''..'....'.., " ...... "'........,......... .........................".,".o, .. .." ."". *"" ",*t,''t , " ..



U ~ ~ ~ P . .W. .

object models. Initially it is biased toward matching to the structures that are

largest, the most regular, and for which the object attribute matches are strong-
U[ est. In this case, the largest structures that can be reliably matched are the

LAND-TERRAIN-AREA and LARGE-RIVER-AREA. The LARGE-RIVER is

indicated by attributes of being dark, large, and elongated. LAND-TERRAIN is
indicated by multiple contrasts at high density.

The SAR-object-network, part of the SAR Object Knowledge Source in Fig-

ure 2-1, stores the general object types that are compatible with a LARGE-

RIVER. Associated with the models of these associated objects are explicit

finders that will direct queries to the ISDB and focus application of segmentation

processes to the image. This is constrained by the instantiation of the LARGE-

RIVER hypothesis. These begin looking for riverbanks (elongated bright or dark

regions parallel to the boundary of the river), bridges (roads or long straight lines
r roughly perpendicular to the river), and tributaries (windy, dark regions leading

off of the river). The certainty of the LARGE-RIVER object is associated with

the success of the finders associated with its compatible or component objects.

Some of the actions associated with the Finder for tributaries from large

rivers are shown in Figures 2-7 through 2-12. Figure 2-7 shows a close-up view of

the high frequency curve segments extracted from th. image in Figure 2-2. The

Finder looks for a high contrast edge near the boundary of the extracted river

*j segment shown in Figure 2-8. A selected edge segment is shown in Figure 2-9

along with the attributes associated with that edge in the image structure data

base. It then evaluates the average intensity across this segment and generates a

binary image at this average intensity. The resulting image is evaluated for long,

connected, winding regions which are connected to the LARGE-RIVER-AREA

(Figure 2-10). If none are found, a different high contrast segment is selected.

The boundaries of the binary image (Figure 2-11 and 2-12) are then used to

direct an edge-linking process to follow parallel curve segments near the boun-

daries of the binary image.

The Bridge-Finder looks for long straight regions or curves that are not

aligned with the river and intersect anomolies, such as bright spots in the

LARGE-RIVER region. It can also extend the curves across the river looking for

a continuation of the curve segments on the other side. Figure 2-13 shows the

extracted edge segments from the lower right hand corner of the image. Figure

V2-14
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Figure 2-10: Selected Edge and Corresponding Binary Image
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2-14 shows the river area overlaid with the thinned version of these edges. Figure

2-15 shows the long straight edges, which are not aligned with the river and also

intersect the river at an anomolous bright spot corresponding to a bridge.

An anomoly is any interesting image structure that is not associated with

an instantiated object hypothesis or an object that is incompatible, as specified in

a network of relations between world objects, with an instantiated object.
Finders can also exist for particular types of anomolies, such as unaccounted
objects in the river. Figure 2-16 shows the extracted high frequency contours in
the river area. Figure. 2-17 shows which of these contours exceeds a minimal

length criteria and Figure 2-18 shows the straightest subsegments associated with
these. These (Figure 2-19) are anomolous structures in the river. Such structures

are compatible with bridges or boats but the finders for these objects would be
"i: unsuccessful since the associated contours are too dark and large to be boats and

are not bridges, since they are not oriented with any significant linear structures

on the land areas. These are high frequency, very low contrast features which
would be removed by the noise estimating process associated with the edge opera-

tor used in their extraction. By basing their extraction on structural criteria

however, we are able to find them. Anomolies will often correspond to world

objects for which the system has no a priori model.

In parallel with the Finders and other potential, compatible objects
* activated by the LARGE-RIVER-AREA hypothesis, are Finders and objects asso-

ciated with the TERRAIN-LAND-AREA. In fact, the control of hypothesis

verification and generation becomes more and more decoupled as distinct image
areas are partitioned. This is reflected by the System Controller allocating
different resources to different parts of the image during processing if there are

multiple processors. Terrain types are distinguished by textural classification into
such types as URBAN, FOREST, SUBURBAN and further subtypes. There are

also perceptual textural typing associated with particular segmentation rules.
Figure 2-20 shows the extracted high frequency contours in the image. Figure 2-
21 shows the selected short linear segments extracted from these image contours
and restricted to the TERRAIN-LAND-AREA. Such edges tend to form a useful
set for computing textural properties with respect to their average contrast,
orientation, or alignment with respect to a local neighborhood. Associated with
each TERRAIN-LAND-AREA subtype are feature descriptions parameterized by
sensor parameters. The histogram with respect to the average contrast computed

t. 2-19
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Figure 2-14: Overlaid River

Figure 2-15: Long Linear Segments
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Figure 2-17: Long Edges in River
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Figure 2-18: Long Linear Segments

Figure 2-19: Long Linear Segments-Positioned inRiver Region 
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along the selected segments shows a distinctive peak (Figure 2-22) which maps

onto the curves shown in Figure 2-23. The remaining segments are shown in Fig-

ure 2-24. The thresholded density plot of the segments in Figure 2-24 are shown

in Figure 2-25. The properties of dense, randomly oriented texture, at low inten-

* sity correspond to potentially forested areas. FORESTED-AREAS in turn,

activate Finders for tree-lines, indicated by long contours that are very bright on

one side and dark on the other side.

The non-forested image areas are evaluated with respect to other generic

terrain types such as urban or agricultural. Urban terrain is indicated by high

contrast, orthogonal texture elements. Figure 2-26 shows an enlargement of the

upper left hand corner of the original image. Figure 2-27 shows the orientation

histogram of this with respect to the linear segment approximations thresholded

with respect to contrast. A non-uniformity of texture element orientation is indi-

cated by the distinct peaks. Figure 2-28 shows the image segments correspond to

the large peak on the right. Figure 2-29 shows a histogram with respect to those

selected elements. The texture elements corresponding to the two large, roughly

orthogonal peaks in this histogram are shown in Figures 2-30 and 2-3 1.

In the non-forest, urban areas finders for instances of attributes for build-

ings, roads and patterns are applied. The road in this area of the image is some-

what interesting because large segments along it are obscured. The Road-Finder

U executes a set of segmentation procedures biased to find long connected segments

perpendicular to the grid orientation. Figure 2-32 shows the extracted edges and

Figure 2-33 shows the linear segment approximations to those edges which exceed

some threshold with respect to length. Figure 2-34 and 2-35 show a set of linear

segments selected by an edge-tracking procedure which was initialized with the

uppermost edge in the set. This tracking was based upon maintaining a

smoothly changing orientation with similarly oriented contrast for each selected

* edge. This corresponds to the attributes of a road parameterizing an edge track-

ing procedure. For rivers, the tracking procedure could be initialized to track

both boundaries simultaneously with global windiness allowed in the orientation

changes. Figures 2-38 and 2-37 show the connected contour with respect to the

linear segments and edges.

At this stage of processing, the system has determined the basic terrain

types and parts of the river network. It has also determined basic objects and
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Figure 2-35: Linked Edge Fragments (cont'd)
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features associated with these: roads, tree-lines, and bridges. Basic to this pro-

cessing is the network in the SAR Object Knowledge Source which describes

general object relationships. It directs processing through the use of contextual

information: the bright blob in the river area is processed differently than those

in terrain areas. Processing can continue to finer and finer levels of detail fromel

the predictions generated from each instantiated object's expected relationships

- to other objects. Processing also continues by matching object format descrip-

tions against extracted image structures which have not been reliably associated

with an object hypothesis or by attempting to resolve conflicting object

hypothesis which are associated with the same or intersecting object hypothesis.

In this case, the predicted relations associated with the object type descriptions

for the conflicting hypothesis are used to direct the disambiguation.
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8. IMAGE STRUCTURE DATA BASE

The Image Structure Data Base (ISDB) is where all the basic operations for

representations are applied to and processing results obtained from a set of

-images and related structures. In this section, we describe the objects that are

represented in the ISDB, their attributes, the types of queries and operations that

may be applied over these objects, and aspects of the implementation of the

ISDB in ZETA-LISP FLAVORS. The basic role of a symbolic/relational data

base describing extracted image information is well established in computer vision

systems. There are many spatially tagged, symbolic representations used in

image understanding systems: the primal sketch of Marr [Marr - 82], the curva-

ture primal sketch of Asada and Brady [Asada - 84], the RSV structure of the

VISIONS system [Hanson - 78a,b] the patchery data structure of Ohta [Ohta -

80], and Haralick's [Laffey - 821 topographic classification of digital image inten-

sity surfaces. These all map the results of various image processing routines into

a symbolic, image-registered data base that is accessed by the different types of
system knowledge. Generally, the recognition of objects and more complicated

image structures are expressed as grouping operations over queried entities in

these image structure data bases. Our implementation of the ISDB also has the

capability of representing non-image processing results, processing history, and

binding these to instantiated rules and object formats.

3.1 OBJECTS

The ISDB is implemented as an extendible set of objects common to

object-oriented programming [Goldberg - 84, Krasner - 83 and Moon - 84]. In

this, we explicitly define an object type, its attributes, and the operations that

can be performed upon it. This style of programming supports modularity and

inheritance of attributes and operations over different, but related, object types.

In the ISDB, there are object types for images and basic image structures such as

regions, curves, and points. Relationships between structures, such as

-[ ADJACENT-TO or CONTAINS, are also represented as objects as are non-image

structures, such as the descriptions of processing steps, tables, relational net-

works, and histograms. Particular instances of an object type are said to be

instantiations of the general object type.

3-1
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Our implementation corresponds directly to the FLAVOR mechanism used

in SYMBOLICS ZETA-LISP. Our objects are implemented as flavors with

p queries implemented as methods and functions over these flavors and inheritance

of attributes and methods by FLAVOR-mixing.

3.1.1 Images

A basic object is an image. An image has the following attributes:

IMAGE

. NAME:
* DOCUMENTATION:

r eHISTORY:

* FORMAT:

e ARRAY-TYPE:

e SRC-FILE:

e DIMENSIONS:
e IMAGE-STATISTICS:

9 ARRAY

* NAME: is the how the image is referred to in the active system. This can

either be a unique string or number. DOCUMENTATION: specifies a text file

describing any aspects of the image that a user cares to. HISTORY: is the

sequence of operations that were performed in the production of the image. This

list is updated atutomatically whenever a function is applied to an image. SRC-

FILE: specifies where the image is secondary storage. If this is nil, then the

image has not been saved. ARRAY-TYPE: specifies the type of the array storing

the pixel values. DIMENSIONS: is a list of the x and y dimensions of the image

and any indexing offset that may be used. IMAGE-STATISTICS is a property

list containing such things as minimum and maximum value in the image and the

variance. Since it is a general property list, it can be extended with additional

attributes. ARRAY points to the array containing the image.
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We have also developed a more general construct called a STACK. This is

U a set of images, which may or may not be of the same resolution. For example, a

set of images which are related, such as different bands of some sensor form a

"" stack without resolution reduction between the levels. For pyramid structures

" such as quad-trees, there is a resolution reduction. The attributes of a STACK

* are:

STACK

e NAME:

* TYPE:

@ DOCUMENTATION:

e SRC-FILE:

* NUMBER-OF-LEVELS:

. NEIGHBORHOOD-MAPPING-DOWNWARDS:

" NEIGHBORHOOD-MAPPING-UPWARDS:

o IMAGE-LIST:

The NEIGHBORHOOD-MAPPINGS: specify which pixels are descendents

and parents of a given pixel in the n-th image in the n+1 and n-1 levels of the

* stack. This is for specifying relative access functions across levels. The IMAGE-

LIST: is a list of pointers to the images comprising the different levels of the

stack.

3.1.2 Image Structures

We currently represent three different types of image structures: points,

curves, and regions. A point is a discreet image position, a curve is a connected

sequence of points, and a region is a connected area of points. For each of these,

we distinguish between its locational (-LOCATIONAL) properties based primarily

upon the positions of the points that particular instances of these objects consist

of and to their attributes (-ATTRIBUTES) based upon the image values at these

points. These aspects of image structure objects are represented by different

flavors in ZETA-LISP [Moon - 84] which are integrated by flavor mixing. Thus,

a CURVE inherits the CURVE-LOCATIONAL and CURVE-ATTRIBUTE object

descriptions.
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The geometric properties of a curve are represented by the CURVE-

LOCATIONAL Object definition. This is defined as:

CURVE-LOCATIONAL

* STRAIGHT:

* OPEN:

* LENGTH:

o PNT1:

- * PNT2:

e POINTS:

* SHAPE:

* GRID:

Many of these attributes are related and described by a single number while

others are structured property lists which themselves consist of instances of other

objects. STRAIGHT: is a logical variable describing whether the curve is com-
pletely described by the positions of its endpoints. OPEN: is a logical value

describing whether the curve is a loop or not. LENGTH: corresponds to the

number of pixel-steps along the curve. PNTI and PNT2 are the endpoints of the

"urve. These are not set if the curve is not open. POINTS is the list of the

image-position coordinates sequentially ordered. Note that the value of

LENGTH is the number of elements in the list associated with the attribute

POINTS. SHAPE is a property list consisting of the different types of shape

descriptions that are used in describing the shape of curves. These shape descrip-
tions will in general be objects defined by flavors in ZETA-LISP. Some of the

curve shape descriptions used are the sequence of curvature approximation values

along the curve; contour orientation histograms, and decomposition into linear
sub-segments. Note that the same shape description may have different properties

depending upon the parameters used in the shape extraction processing. An

example of the property list associated with the SHAPE attribute would be:

3-.4
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SHAPE:

((Linear-Approximations

S.:. (#<LINEAR-SEGMENTS 25623674>
# <LINEAR-SEGMENTS 25626617>

07. #<LINEAR SEGMENTS 25630327>))

((Contour-Histograms

(#<CONTOUR-HISTOGRAM 25612226>

# <CONTOUR-HISTOGRAM 25617217>)))

The value of the property Linear-Approximations is a list of instances of

the object type LINEAR-SEGMENTS, which correspond to different piecewise
linear decompositions of a curve:

LINEAR-SEGMENTS

DECOMPOSED-CURVE:

1' CURVE-LIST:

where DECOMPOSED-CURVE: points to the curve being approximated and

CURVE-LIST is a list of pointers to the instantiated CURVES corresponding to

the linear segments. It is possible for the SHAPE: property list not to point to

defined objects. Nonetheless, we feel that any image operation should have an

explicit type of object associated with it for modularity and system extendibility.

-- The motivation here is to allow for diverse shape descriptions to be associated
with curves without adding an endless set of attributes to the object definition.

The parameters describing the extraction of the linear segment approxima-

tion are contained in a more general object type, the ISDB-OBJECT type

described in Section 3.2. Whenever, an object is generated and placed in the

S-.ISDB, how it was extracted is associated with this general object type. Other

attributes associated with the ISDB-OBJECT description are ASSOCIATED-

RELATIONSHIPS and ASSOCIATED-HYPOTHESES. These are lists contain-

ing pointers to all the instantiated relationships that an object is involved with

and all the Hypothesis in the Hypothesis Data Base that an object is involved

3-5
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• -with, respectively.

GRID points to the particular image that contains the curve's points

labeled as a single connected entity. This results from a connected-components
or edge walking process. The label associated with each point along the curve is p

a pointer the instance of the object describing the curve itself. This is essential:

* it allows us to do geometric processing on the grid and still be able to associate
the results with the instantiated curve itself. For example, if processing requires
determining all curves in some area, the pointer-values in the corresponding grid

*- image can be sampled and then stored in a list of curves to which further pro-
cessing is restricted (Figure 3-1). The same processing can be done to sample the

pointer values in other registered images, as to determine all the regions which
are nearby a particular curve.

Besides the geometric specification of curves are the attributes determined
from the image values at the points they contain. These correspond to properties

determined from different images at locations along the curve. Typical examples
of these are the average intensity or contrast along a curve and the variance of

* these things. These are represented as the CURVE-ATTRIBUTES:

CURVE-ATTRIBUTES

* * CONTRAST-IMAGE:

* CONTRAST-AVERAGE:

* CONTRAST-VARIANCE:
* INTENSITY-IMAGE:

* INTENSITY-AVERAGE:

* INTENSITY-VARIANCE:

9 GENERAL-CURVE-ATTRIBUTE-LIST:

t

These are mostly self-explanatory. Contrast is the magnitude of the image
gradient. The CONTRAST-IMAGE describes the image the contrast values are
found in, CONTRAST-AVERAGE describes the average contrast value com-

puted from the points along the curve, and CONTRAST-VARIANCE is the vari-
ance of these values. The attributes are similar for image intensity values. The
GENERAL-CURVE-ATTRIBUTE-LIST is a property list which allows for

r3-S
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#<CURUE 69315860>

-t I

#<CURUE 78511367>

Each point along the curve # <CURVE 69315860> is labeled with a
a pointer to the instance of the curve object #<CURVE 69315860>. Deter-

mining that #<CURVE 69315860> is near an endpoint of #<CURVE
78511367> requires sampling the label values in neighborhoods centered on the
endpoint. Then the global properties of the curves can be accessed through their
object descriptions and further processing based upon this.

Figure 3-1: Object-Label Grid
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extending the types of attributes that can be computed along a curve. These
consist of a list of lists for each such attribute. The sublist contains a pointer to

the image the attribute was computed over, and different characterizations of the
attribute values along the curve. Examples of other useful curve attributes are
the averege chamfer values along a curve with respect to some image object and
the variance of this, to determine relative position and orientation of image
objects. Another is the number of intersections-points of a curve with an

extracted region.

Regions are connected areas of images. Their locational properties are
described by the following object definition:

REGION-LOCATIONAL

* AREA:

e BOUNDARY:

- SHAPE:

o POINTS:
* GRID:

Several of these are similar to the attributes of curves. AREA is the
pnumber of pixels in a region. BOUNDARY is a pointer to an instantiated curve

object corresponding to the closed curve surrounding the region. Note that this

curve object contains the perimeter of the region. SHAPE is a pointer to a pro-

perty list for such descriptions as the MAXIMUM-BOUNDING-RECTANGLE,
the CONVEX-HULL, and other statistics describing the distributions of pixels in
the region or the fit of geometric shapes to the region. POINTS is the list of the
coordinates of points in the region. This would not be used frequently, but is

useful when there are a great many calculations requiring the points: otherwise
the computation can refer back to the label associated with the region in the
GRID, which is similar to that used for curves. REGIONS inherit all the proper-

ties of ISDB-OBJECTS.

f As with curves, we have attributes computed for REGIONS over various

images. These are stored in the REGION-ATTRIBUTES:

-3-8rL8-
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REGION-ATTRIBUTES

e CONTRAST IMAGE:

* AVERAGE CONTRAST:

* CONTRAST VARIANCE:

- * INTENSITY IMAGE:

e AVERAGE INTENSITY:

o INTENSITY VARIANCE:
o GENERAL-REGION-ATTRIBUTE-LIST:

There are several attributes that can be associated with regions based upon the
values of it's points, such as feature histograms and statistics over various texture

measures.

POINTS are treated similarly. The POINT-LOCATIONAL is:

POINT-LOCATIONAL

OX:

•Y:

* GRID:

POINT-ATTRIBUTE

* VALUE:

- In general, point attributes are extracted directly from the image in which they

- occur for reasons of efficiency.

3.1.3 Relations

There are several types of spatial relations between image structures,
describing such things as adjacency, containment, intersection, and so forth. We

treat such relationships as objects which are instantiated in the ISDB. ADJA-
CENT is described as:

3-9
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ADJACENT

e ITEMI:

* ITEM2:

Where ITEMI and ITEM2 refer to the particular objects which are adjacent.

There are specializations of the ADJACENT relationship. For example, adja-

cency between regions requires specification of the boundary between the regions
(which is described by a curve):

REGION-ADJACENT

* (ADJACENT)

' ADJACENCY-BOUNDARY:

i Where ADJACENCY-BOUNDARY is a pointer to a CURVE. Binary relation-

ships with special attributes handled in a similar manner:

INTERSECT

* ITEMI:

' ITEM2:

RELATIVE-ORIENTATION

o ITEMI:

* ITEM2:

" VALUE:

In general, the ISDB contains the results of processing and measurements,

not interpretations which are expressed as hypotheses in the hypothesis data
base. Thus, the ascription of the relationship of PARALLEL or ALIGNMENT

1.- 3-10
...-.- -



-. . . .. . . . . . .3 -Y -V -7.

rb

between two objects would be a hypothesis, while the measurement upon which

of these hypotheses are based would be stored in an instantiated relationship for

RELATIVE-ORIENTATION in the ISDB.

In general, all possible relationships between objects are not determined as
objects are instantiated, but will result from computations resulting from specific

queries. There are some exceptions to this due to efficiency. All region adjacen-

cies, for example, can be computed in single pass procedure.

-= 3.1.4 Non-Image Objects

As already indicated, there are several types of objects which are not image
specific, such as tables, histograms, groups, and different types of shape decompo-

sitions. Groups are selected sets of objects, such as points, lines, or regions, and
are described as:

GROUP

9 GROUP-TYPE:
o GROUP-CRITERIA:

* GROUP-ELEMENTS:

Where GROUP-TYPE: describes the types of entities in the GROUP;

GROUP-CRITERIA describes on what basis they were selected and from what

GROUP or IMAGE they were selected from; GROUP-ELEMENTS points to a

list of the elements in the GROUP. A one-dimensional histogram is described as:

ID-HISTOGRAM

" PRODUCED-FROM:

* MIN:

o MAX:
o BUCKET-NUMBER:

i -11
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9 EXTRACTED-CLUSTERS:

HISTOGRAM-ARRAY

* BUCKET-WIDTH

3.2 PROCESSING RELATIONSHIP STRUCTURE

The Processing Relationship Structure (PRS) stores information describing
AL the processing relationships between the different objects in the ISDB and the

instantiated hypothesis and tasks which invoked their creation. The PRS is a

graph in which nodes store information about invoked procedures. The PRS-

NODE is an object with the following attributes:

PRS-NODE

* PROCEDURE:

* e PARAMETERS:

* ASSOCIATED-HYPOTHESIS:

* APPLIED-TO:

a RESULTS:
* ATTRIBUTES:

PROCEDURE: indicates the procedure that was used. The segmentation

processing module contains a library of procedures for such things as particular

edge operations, region extraction and shape description. These are referred to

here. PARAMETERS: describes the parameters used in the procedures. These

are such things as the number of iterations of a smoothing procedure and certain

thresholds used in particular edge operators. ASS OCIATED-HYPOTHESIS:

points to the associated hypothesis or task which invoked the procedure. A pro-

cedure is done for some reason, under the control of a perceptual grouping rule or

strategy, or SAR Object Knowledge Format which has been instantiated. This is

useful for reasoning about why something was done and for keeping track of con-

text. APPLIED-TO describes the set of objects in the [5DB that the procedure

was applied to and RESULTS describes the set of objects which the procedure

produced. ATTRIBUTES: is a general property list for storing any parameters or
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results which are not explicit objects in the data base.

* Since all objects in the ISDB can occur in the PRS, we have a very basic

object type to describe relationships in the PRS, the ISDB-OBJECT. The attri-

butes of the ISDB-OBJECT are common to all objects:

ISDB-OBJECT

* PRODUCED-FROM:
9 INPUT-TO:
* ASS OCIATED-HYP OTHESIS:

- ASSOCIATED-RELATIONS:

PRODUCED-FROM: describes the procedure which produced or updated a par-

ticular object. It is a list of pointers to instantiated PRS-NODES. INPUT-TO:

is a list of all the procedures to which the object was used as input.

For example, consider a segmentation rule for determining whether there is

i a grid like structure in an image. Such a rule acts to extract globally significant

structure which provides a context for directing and constraining further process-

ing. This rule can be paraphrased as:

* <GLOBAL-GRID-RULE>

- To determine the presence of a grid structure:

1) Find long straight edges in an image

2) Form a Histogram based upon edge orientation

3) Extract Histogram Clusters

S-4) Find Clusters corresponding to roughly orthogonal orientations

5) Apply Evaluation Criteria to evaluate rule success

S8-13
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When this rule is interpreted, it produces several intermediate results. One

reason for maintaining all these processing relations explicitly is so that process-
*. ing steps need not be repeated. There will be several other rules based upon the

set of long, straight high frequency curves. The example PRS and objects pro-

duced by execution of this rule are shown in Figures 3-2 through 3-7. The result-

ing internal data structure is shown in Figure 3-8.

The PRS will be useful when the system is used interactively. It will be
possible to regenerate interesting results without becoming inundated in pointers

to objects by backchaining from an object through the latice of PRS-nodes.

3.3 QUERIES

Queries over the structures in the ISDB are implemented either as methods

associated with the defined object types or as functions. We now give some exam-

ples of what such queries and methods are like. A basic function is to select from
*" a group of entities, those with particular attributes. A method for this, defined

over groups with numerical valued attributes, is:

3 (defmethod (group : select-on-attributes) (attribute low high)

(let* ((element-list (send self ':group-elements))
(new-group (make-instance-group))
(new-prs-node (make-instance-prs-node)))

(send new-prs-node ':set-procedure "select-on-attribute")U .(send new-prs-node ':set-parameters

(list "attribute" attribute
$$low" low
"high" high))

(send new-prs ':set-applied-to self)
(send new-prs ':set-results new-group)
(send new-group ':set-group-list

(loop for e in element-list list
(cond ((and(>(send e attribute) low)

(<(send e attribute) high) )e))))))

This defines a method applied to groups which will form subgroups using

the criteria that the specified attribute is between low and high for the subgroup
elements. The let* statement creates a new instance of a group and an associ-

Z" ated PRS-NODE. The attributes of each are set in a series of SENDs. Process-

ing consists of looping through the list of objects in the group and seeing which

are in the specified bounds.
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Figure 3-2: Field Image: (ETL36)
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Figure 3-4: Thinned and Labeled Edges
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• . Figure 3-5: Long Linear Subsegments
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Figure 3-6: Orientation Histogram over Long Linear Subsegments
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Figure 3-8: Processing Relationship Structure
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To determine the histogram of some set of entities:

(defun object- list-histogram3 (object-list attribute min max number-of-buckets)

(let* ((histogram (create-histogram
'min min
max max
'number -of-buckets number-of-buckets
'procecdure "object- list-histogram"
'applied-to object-list)))

(loop for e in object-list do
(let* ((value (send e attribute)))

(cond ((> value max) nil)
((< value min) nil)
(t (send histogram ':bucket-fill value)))))

Here we begin to see the general style of programming supported by FLA-
VORS. We have a routine that will compute a histogram over any set of objects

twith any numerical attribute (this attribute may itself be a method which returns

a number). The create-histogram statement creates a histogram and initializes

the related PRS-NODE. From these specified attributes, the instantiation

methods associated with the histogram object definition will determine the oth-

3 ers, such as bucket-width. The loop statement goes through the object-list and
sends the particular values to the instantiated histogram, which updates the asso-

ciated buckets. Bucket-fill is a method for placing values into the histogram

array.

(defmethod (histogram :bucket-fill) (value)

(let* ((bucket (round (quotient (- value (send self ':min ))
(send self ':bucket-width))))

(hist-array (send-self 'histogram-array))

(aset (addl (aref hist-array bucket)) hist-array bucket)))

To determine the set of objects within some distance of a point:

3-22
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* (defun labels-near-point (point label-image square-radius)

(let* ((label (send label-image ':Array ))
(label-list nil)
(dimensions (send label-image ':Dimensions))
(max-x (subl (first dimensions)))
(max-y (subl (second dimensions)))
ma(px (first point))
(py (second point)))

(loop for x from (- square-radius) to square-radius do
(loop for y from (- square-radius) to square-radius do

(let* ((tx (+ x px)) (ty (+ y py)))
(cond ((and (between tx 0 max-x) (between ty 0 max-y))

(let* ((tl (aref label tx ty)))
(cond ((null tl) nil)

((memq tl label-list) nil)
(t (nconc label-list (list tl))))))))))

r label-list))

This is a function which takes in the point location, the object-label image
to look through, and the size area to send through. The bindings in the outer-
most Let* statement access the image array and its dimensions. To determine

the set of objects within a masked area of an image containing pointers to ISDB
objects we use the following function:

(defun label-select-mask (label-image mask-image)

(let* ((label (send label-image ':Array))
(mask (send mask-image ':Array))
(dimensions (send label-image ':Dimensions))
(xmax (subl (first dimensions)))
(ymax (subl (second dimensions)))
(object-label-list nil))

(loop for x from 0 to xmax do
(loop for y from 0 to ymax do

(let ((lab (aref label x y)))
(cond ((not (- (aref mask x y) 1)) nil)

- ((null lab) nil)
((memq lab edge-label-list) nil)
(t (nconc edge-label-list (list lab)))))))

(object-label-list))

To determine the set of objects within some distance of an edge could then
be made up from a sequence of actions and similar queries. The first is to gen-

erate a mask image from the label-image containing the object which is an
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enlarged version of the object:

(defun generate-object-mask (object)

(let* ((image (send object ':from-image))
(image-array (send image ':array))
(mask-image (allocate-image (send image ':dimension)

art-lb
(build-history

(list "generate-object-mask" object)
(send image ':history))

(mask-image-array (send mask-image ':array))
(xmax (subl (first (send image ':dimension))))
(ymax (subl (second (send image ':dimension)))))

(loop for x from 0 to xmax do
(loop for y from 0 to ymax do

(cond ((eq object (aref image-array x y))
(aset 1 mask-image-array x y)))))

mask-image))

The mask generated for the object is then enlarged by repeated applications

of the function fatten-mask.p
(defun fatten-mask (im)

(let* ((image (send im ':array))
(dimension (send im ':dimensions))
(fat-mask (allocate-image dimension art-lb

P (build-history (list "fatten-mask" im)
(send image ':history))

(loop for i from 1 to (- (nth 0 dimension) 2)
do (loop for j from 1 to (- (nth 1 dimension) 2)

do (cond ((= (aref image i j) 1)
(loop for x from -1 to 1

do (loop for y from -1 to 1
do (aset 1 thresholded-image (+ i x) (+ j y))))))))

fat-mask))

The set of objects within the fattened mask is determined using the func-

tion label-select-mask. Note that this mask is a temporary image which could be
removed using the function deallocate-image. There are other ways of determin-

r ing the objects within some distance of a specified object using image chamfering
discussed in Section 4.
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Figures 3-9 through 3-14 show these operations for such a query. Figure 3-
9 shows a set of extracted curves. Figure 3-10 shows the curves selected by a

select-on-attribute method to form a group of curves exceeding a minimal length

threshold. Figure 3-11 shows one of these curves which is selected. Figure 3-12

shows the mask generated from this selected curve. Figure 3-13 shows the curves
from the selected group which intersect the masked-area and Figure 3-14 shows

those curves having most of their positions contained in the mask. Further test

upon the orientation attributes of these curves could be done to determine align-

ment.
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Figure 3-9: Extracted Curves

Figure 3-10: Selected Curves Based Upon Length and Average Contrast
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Figure 3-11: Selected Curve

Figure 3-12: Mask Surrounding Curve
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Figure 3-13: Curves Intersecting Mask

U

Figure 3-14: Curves with Dominant Intersections with Mask
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4. SEGMENTATION KNOWLEDGE SOURCE

This section describes the Segmentation Knowledge Source. We begin with

the requirements upon segmentation procedures for incorporation into an

automated vision system. The section then describes the particular edge, region,

and shape extraction procedures implemented and analyzed. These serve as the

basic processes that the system uses to extract image structures. Finally, the

organization of segmentation knowledge in terms of rules that facilitate both

model and data-driven processing is described.

4.1 IMAGE SEGMENTATION

Image Segmentation is concerned with breaking an image into structural

components, such as regions, boundaries, edges, and points, that can be used

throughout the interpretation process. There has been significant work in the

last 25 years in developing such techniques. Still, this work has not resulted in

automatic image interpretation systems. Primarily this is because such routines

do not decompose an image into structures which correspond to world objects.

World objects are semantically determined entities whose extraction requires con-

textual and object-specific knowledge which cannot be easily incorporated into,

* for example, low level filtering operations. That is, it is impossible to make a

general filter that will detect roads. It is possible, however, to automate the rea-

soning about the segmentation procedures that can be used in the extraction of

roads based upon a priori information and the status of the ongoing image

£ interpretation process. We see automating this process of reasoning about seg-

mentation as the basic research task we are addressing.

There are some general properties that low level vision processing must

- incorporate for such flexible application in automated image interpretation.

First, the segmentation processes must be explicitly understood in terms of the

types of image information they are sensitive to and can extract. This entails

relating the parameters controlling a particular segmentation process and the

r kinds of image structures that will be extracted. We express this as rules relating
different image properties and the parameter settings for particular segmentation

procedures. A basic example of this is the use of segmentation procedures which
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are selectively sensitive to different spatial resolutions such as zero-crossing

extraction [Marr - 80]. A second example is being able to manipulate the cluster

formation process in histogram-based segmentation based upon expected image

events. In addition, the segmentation processes should be applicable, with

different parameter settings, to restricted portions of an image that will be iso-

lated for focused processing during the interpretation process. All of this allows

the interpretation process to have active and intelligent control over the segmen-

tation process itself. Intelligent segmentation requires a symbolic representation

of the structures in an image and the contexts in which they were extracted.

This enables the segmentation process to be based upon general relations and

attributes. Segmentation in truly autonomous computer vision systems can not

consist of applying standard edge and region routines to an image and then inter-

preting the results. It is an intelligent, problem-solving activity that requires

rules and strategies over symbolic representations.

4.2 EDGE EXTRACTION PROCEDURES

Edge extraction is fundamental to image processing. It involves several
Uthings: the basic operators for describing local changes in image intensity; the

various grouping and thinning operations for combining these local measurements

into linear features; and several different shape descriptions and approximations

that can be associated with these linear features. From our perspective, we favor

* the use of simple edge operators whose responses are directly related in a clearly

understood way to underlying image properties. They should also be tunable for

selective sensitivity to particular types of image structures based upon such

things as spatial frequency or specific predictions from an environmental model.

We also believe that a wide range of segmentation grouping and thinning opera-

tions are necessary but that the effects and application of these requires explicit

representation and should not be implicitly contained in some process. For exam-

ple, the Nevatia-Babu [Nevatia - 80] edge operator is often adequate at extracting

linear segments of high contrast, but it contains a wide range of parameters

whose effects are not explicitly understood in terms of underlying image struc-

ture. This makes the operator very hard to model and understand and thus to

apply in an intelligent manner in an automatic system. Operators for which

there is an explicit model for the relation between image structure and operator

response are the Canny edge operator [Canny - 831, the Marr-Hildreth operator,
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Burt's pyramid operations [Burt - 81 and Burt - 821 and Haralick's topographic

primal sketch and slope-facet edge models [Haralick - 81 and Haralick - 83].

P These are also multiresolution operators for hierarchical processing. We now

describe some of these.

4.2.1 Zero-Crossing Extraction

Zero-Crossing based edge extraction was introduced by Marr and Hildreth

[Marr - 801 and has since been used in a variety of applications [Grimson - 85].

Computationally, it can be expressed as a three step procedure applied to an

image:

1. Convolution with a Gaussian mask to select contrast at different spatial

frequencies.

2. Convolution with a Laplacian mask to determine points of significant

intensity change.

3. Thresholding the result of Laplacian convolution at Zero to extract

closed contours along which the image intensity changes are maximal.

This corresponds to finding the zeros of a second derivative.

Zero-Crossings can be extracted by other means. The Laplacian of a Gaus-

sian can be expressed as a single convolution mask (the Mexican hat operator

related to center/surround cells in animal retinas. This can also be computed by

a difference of Gaussians. The physiological reality of Zero-Crossings has been an

active area of interest since Marr's work first appeared.). This convolution can

be performed using the Fourier Transform or other computational speed-ups pos-

sible for symmetric convolutions [Canny - 83]. There is also current interest in

performing the convolution optically [Grimson - 85].

Figure 4-1 shows a selected portion of an image of some fields. Figures 4-2

through 4-7 show the sequence of zero-crossing regions and boundaries extracted

using increasingly wider Gaussians. Figure 4-2 shows the Lap!acian of the raw

image. Note the high frequency noise producing vertical banding and how this is
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filtered out at the lower spatial frequencies. Figures 4-8 through 4-9 show the

extracted contours based upon thresholding the contrast at the zero-crossing.

SFigure 4-10 shows the threshold zero-crossings from the different spatial frequen-

cies in the previous figures combined if a majority of them had zero-crossings at

image points.

4.2.2 Canny

The Canny edge operator is a directional multi-resolution edge operator

with many appealing properties [Canny - 831. First, it was derived by a varia-

tional argument. That is, the operator is guaranteed to meet certain optimality

conditions for a particular type of edge. In Canny's derivation, the optimality

criteria were developed for position and unique detection of step edges in Gaus-

sian noise. Second, the operator is tunable for sensitivity to edges at different

spatial frequencies. And finally, the operator has many interchangeable com-

ponents for such things as using masks to calculate edge support over larger

areas, noise estimation, and linking local edge measurements together.

* The basic steps of the operator are:

1) Smooth the image with a Gaussian mask, to effectively filter the desired

n spatial frequencies. The convolution can be done in many ways and

Canny's thesis contains an excellent review of techniques for symmetric

convolutions. In our work, we have used the simplest of these, based

upon 1-D mask convolutions in two orthogonal directions.

2) Calculate the gradient of the image. This is done by centering the gra-

dient vector on the center of the 2x2 mask in Figure 4-11 and calculat-

ing the gradient components from the difference in the two orthogonal

directions.

3) The local maxima in the gradient magnitude are determined. This is

done for a given gradient vector by interpolating the gradient in the for-
ward and backward direction along the vector at the points indicated in

Figure 4-12, projecting the interpolated gradient at these points onto

the line to determine the interpolated gradient magnitude. A point is

i. 4-4
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* Figure 4-7: Extracted Zero-Crossing Regions and Contours (cont'd)
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tagged if it is a local maximum in gradient magnitude with respect to its

interpolated neighbors.S
4) The extracted maxima are then evaluated with respect to a threshold

corresponding to the extent to which they are maximal relative to their

" neighbors based upon a global noise estimation.

These values may then be further evaluated with respect to the values at neigh-

boring points in a hysteresis edge linking. In our implementation, we select the

edges based upon other explicit criteria concerning average attributes along the

edge or shape relations with nearby edges. It is also necessary to perform an 8-

connected edge thinning to obtain contours which can be traversed.

Figures 4-13 through 4-15 show the output of the Canny edge operator at

different spatial frequencies corresponding to increasingly large Gaussians, applied

to the image in Figure 4-1.

*We have found the Canny edge operator to give very good results. It can

be used in a tunable fashion and will generally pull out any observable edge.

One problem, which is not particular to the Canny edge operator, but instead

dealing with noisy imagery, is that it will miss low contrast, high frequency

features in such images.

4.2.3 Burt

The Burtian Pyramid [Burt - 81 and Burt - 821 provides simple, fast tech-

niques for determining image properties and representing image properties at

multiple levels of resolution. The processing is based upon the formation of two

different hierarchical representations of an image. The first is called the GAUS-

SIAN PYRAMID and is formed by smoothing an image with a 5x5 mask which

approximates a Gaussian, subsampling the resulting image at every other pixel to

reduce resolution and form a reduced image. This can then be applied interac-

tively to produce a sequence of images, each 4 times smaller than the one it was

generated from. Each level of the Gaussian Pyramid corresponds to the image

information at a lower spatial frequency. The reduction operation can be applied

rapidly.

41
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The contrast information in the Gaussian Pyramid is computed by the fr-

mation of the LAPLACIAN PYRAMID. This can be produced in two ways. In
I one of these, a 5x5 Laplacian operator is applied to each level or the Gaussian

Pyramid to generate the corresponding level of the Laplacian Pyramid. In the
other, the nth level of the Laplacian Pyramid is formed by expanding the n+1

level of the Gaussian Pyramid to the same resolution as the nth level and sub-

tracting the two. This corresponds to the fact that the difference of Gaussians
* will approximate zero-crossings. Thresholding at zero yields the zero-crossing

contours.

Figure 4-16 shows the zero-crossing regions at the different levels of the
* Laplacian pyramid obtained for the image in Figure 4-1. Figures 4-17 and 4-18

show these images at a normalized resolution. Figure 4-19 shows the thresholded

* contours from the zero-crossings.

* 4.2.4 Hough Transform

The Hough Transform [Hough - 62] is a global histogram technique for edge
I extraction. In it, each image point "votes" for the parameters describing the line

perpendicular to the gradient at the point. Parameter buckets containing the

most votes will correspond to straight line segments in the image. The Hough

Transform is an effective technique of extracting and grouping spatially discon-
* nected edge segments. More complicated curves require more parameters. The

selection of bucket-size is a critical issue.

There are several different parameter!izations which can be used to describe

lines in the image plane. The conventional one is (Figure 4-20):

X~z + AY2

e=tan-1

which relates the gradient (Ax ,Ay) at point (Z OY) to the r ,0 parameters

describing a line through that point and perpendicular to the gradient. This
parameterization avoids problems with infinite slopes, and allows for any line seg-

ment in an image to be represented using parameters with finite ranges.
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Figure 4-17: Zero-Crossing Regions from the Laplacian Pyramid (cont'd) 7
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Figure 4-18: Zero-Crowsing Regions from the Laplacian Pyramid (cont'd)
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Figure 4-21 shows the ID projection of the Hough Transform for the image
in Figure 3-2 from Section 3 onto the e axis. It thus describes the distribution of

3 e values for gradient vectors from the image independent of r. The two peaks

* correspond to the general grid pattern in the image. Figure 4-22 shows the image
* points corresponding to one of the peaks in this histogram. The linear charac-

* teristics of the selected gradient values are apparent. Nonetheless, effective use of
the Hough Transform requires further processing to group and thin these selected

* gradient points into distinct edges.

4.2.6 Gradient Based Edge Linking

Gradient Based Edge tracking techniques connect local measures of the
image gradient together guided by criteria corresponding to such things as the

length, shape, and contrast of the resulting connected edge. These procedures
involve measuring the gradient at an image point to determine the local contour
orientation. In this form of edge-tracking, image points correspond to nodes in a
search tree, with arcs between nodes corresponding to a contour connection
between image points. The expansion of the search tree is guided by general

N search techniques [Nilsson - 801 using evaluation measures based upon minimal or
constant change in orientation or curvature.

We decided against gradient based edge tracking in favor of grouping over
* the segments and linear subsegments produced by the Canny, Burt, and region
* extraction segmentation routines. We found gradient based techniques were too

local and not easily generalizable to linking based upon semantic criteria while
* the grouping process over extracted entities in the ISDB was. We did experiment

with different ways of measuring the gradient support about a point by comput-
* ing gradient deviation along different distances perpendicular to the gradient at a

point (corresponding to contour length) and at distances along the gradient (con-

tour width).

* 4.2.6 Segment Based Edge Linking

Segment based edge linking links together the edge segments generated by .

different edge operators using rather general conditions. For example, in tracking
along a river, we want to link using two parallel edge segments, which surround a

darkened area, are within some distance of each other, and have both local and

F 4-26
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global constraints on orientation change with respect to contour length. Such
processing involves operating over extracted structures and their associated rela-

Stionships and attributes in the ISDB and Hypothesis/Task Data Base. An exam-

ple is to extend from a selected curve segment and a direction, successive edge

segments with minimal orientation change over a neighborhood. Figures 4-23

through 4-26 show this for a selected linear subsegment from a set of such seg-

ments. The key to this approach, in contrast to gradient based edge linking, is
that the grouping can be made conditional on abstract relations and attributes,

associated with entities in the ISDB, and related to the ongoing interpretation

process.

Three things are involved in segment based edge linking:

F1) A Successor Function which determines for a given edge and edge

sequence what the allowable successors fragments are. Currently, our

successor function generates all edge fragments contained in a given set

of areas (Figure 4-27) parameterized by orientation and distance, using

i either the current edge segment or the sequence of edge segments along

a given hypothesized contour.

2) An Evaluation Function which evaluates the correspondences of a set of
p edges to a connected curve sequence. The evaluation function is used to

determine which curve from the successor set is best for extending a

potentially connected curve sequence. There is an unlimited number of

evaluation functions corresponding to different Programmed Finders and

Segmentation Routines. One is to select the edge which is closest and is

also within certain bounds of orientation, average contrast and intensity

of the last selected curve segment. The linking can also be based upon

more abstract geometrical characteristics of the curve, such as an

approximation to a constant change in orientation; or a combination of

these and that the edge is within some distance of a region with river-

like attributes.

3) The Search Control which keeps track of the multiple curve sequences

and determines which curve to continue linking processing upon. Start-

ing from a given edge fragment, multiple sequences are possible. These

L. 4-29
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are maintained in a search tree organized by a global ordering from the

evaluation function.

4.2.7 Nevatia/Babu

The Nevatia-Babu Line finder consists of the following steps:

1) Detect local edges by convolution with 5x5 masks sensitive to edges

oriented in six directions (every 30 degrees) and store the mask convo-

lution which gives the greatest response and the direction of this

response. 0

2) Select these local edges based upon a threshold on their response magni-

tude and using a thinning procedure which selects an edge if its magni-

tude is greater than the neighboring pixel's edge magnitude in the direc-

I tion perpendicular (non-maxima-suppression)

3) There is then a linking procedure operating over the selected edge points

which extracts chains, forks, loops, isolated points, bridges. These are ,

_- then fit to piece-wise linear segments to extract straight lines.

Our experience with the Nevatia Babu line finder is that it works extremely

well at determining large features surrounded by sharp step edge of high con-

trast, but that the general characteristics of SAR (scintillation, side-lobing and

scattering) degrade its performance. In general, there are an unyieldly number of

parameters., especially for the third step. The applications of these operations -,

should be dependent on the status of the ongoing interpretation process. Figure

4-28 shows a SAR image. Figures 4-29 and 4-30 show the outputs from the

Nevatia-Babu edge finder using different thresholds.
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4.2.8 Others

There were other edge extraction techniques which we studied but did not
implement: Burns [Burns - 84] straight line fitting procedure and different relaxa-

tion based procedures [Hanson - 80]. In general, we have decided to use simple,

understandable and controllable edge extraction processes, such as the Zero-

Crossings, Burt and Canny to find edges as different spatial frequencies and

strengths. More complicated processing will be performed by explicit grouping

operations over these extracted structures stored in the ISDB. These grouping

* .operations are based upon predicted object identity or general perceptual criteria

expressed as segmentation rules and strategies.

4.3 REGION SEGMENTATION

Regions are connected image areas determined by the similarity of attri-
butes reflecting te.&ture or intensity or the gradient of such measures. As with

edges, the region extraction processes should be tunable and the relations

between parameters describing their operation and their effects explicitly under-

[stood. Also similar to edges, there are grouping and merging operations applied

over extracted regions for joining or breaking them based upon shape properties,

registration with an extracted linear feature, or the conditional evaluation of a

weak difference in feature type between adjacent regions. These operations

should be explicitly represented as hypothesis which can be evaluated and verified

over time.

S :"There are several region extraction processes which have such properties.

Among them are conventional histogram-guided segmentation techniques [Ballard

- 821 (and particular variants for relaxation updating of region labels [Nagin - 791

and application over image sub-areas [Kohler - 83]) and Burt's Hierarchical seg-

mentation processing [Burt - 83a]. These processes may be applied over simple

intensity and contrast measures or texture measures based upon such things as

Markov coefficients, probability distributions, concurrency tables, and fractal

dimension estimates.
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4.3.1 Histogram-Based SegmentationI

Histogram-based region segmentation is a general technique for breaking an

image into connected areas with similar attributes. The basic steps are to obtain

a histogram over an image or image area with respect to some set of features,

extract clusters in the histogram, project these cluster labels back onto the image,

and finally extract the connected label sets in the image. There are several vari-

PR ants of this basic procedure at each of these basic steps. In recursive segmenta-

tion techniques [Ohlander - 75], the extracted image areas become the image

areas over which succeeding histograms are formed. In relaxation-based tech-

niques [Nagin - 79], the histogram label image is modified by local pixel compati-

bilities. There are several different criteria by which clusters can be extracted

from histograms. In fact, for higher dimensional feature histograms, the recogni-

tion of clusters can be as complicated as the recognition of structure in the

underlying image itself.

We have used the simplest of these: 1D histograms over selected features in

masked areas where peaks are extracted based upon being a local maxima over

some range, separation from neighboring peaks by some distance, and the

existence of a similarly distinctive minima ,point between peaks. We have also

begun using some of the shape fitting procedures described in Section 4.4.1 to

characterize peak structure in ID histograms.

7 4.3.2 Plurality Updating

Plurality Updating involves changing the segmentation-attribute label asso-

ciated with a pixel based upon the label values in a neighborhood surrounding

the pixel. In Plurality Updating, as the name implies, this involves going with

the majority label in the neighborhood. The effects of Plurality Updating are to

smooth out segmentations locally.

4.3.3 Texture Segmentation

The Hierarchical Discrete Correlation, or HDC, is similar to the Burtian

Pyramid except the resolution stays constant from level to level and the elements
of the 5x5 convolution mask elements are applied to pixels separated by greater

and greater distances. The result is a rapid technique for computing image
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properties, centered at a point over larger and larger neighborhoods. The HDC is

useful for texture classification, since, for a given attribute such as edge orienta-

tion, contrast, or density it can compute the average value directly and variance

by subtracting HDC values from different levels.

Figure 4-31 shows selected edge elements based upon contrast and length.

Figures 4-32 through 4-34 show contour plots of the HDC at higher and higher

levels based upon average edge density.

Related to the HDC, and which we have found to be of more use, is decom-

posing an image into same size sub-images and computing attributes over the

image structures in the ISDB which are contained in the image sub-areas. This

yields an object-based, multi-resolution description of image properties, which is

more controllable than the HDC. An example of this technique was given in Sec-

tion 2 where segmentation was done on edge fragments of a certain length with

respect to intensity. The size of the sub-images can be directly related to the

type of environmental feature being used for texture classification.

This type of texture segmentation, especially with SAR imagery, can also

* occur with respect to regions extracted by thresholding. Figure 4-35 shows The

effects of sensor resolution on region texture elements extracted by thresholding.

The texture classification occurs using the region attributes of the blobs over

image sub-areas.

4.3.4 Kohler

Kohler's Segmentation Procedure [Kohler -81] is a histogram-based pro-

cedure which takes into account local edge structure and contrast. An edge-

* element between image pixels will vote for a value in the histogram if a threshold

at that value places an edge between the associated pixels. This vote can be

* modified by the relative value of the pixels and the threshold. Thus, a threshold

can be selected which maximizes/minimizes contrast, or the number of edges, or

ratios of these two. Peak detection in Kohler's algorithm is simplified since the

maximal value in the histogram is always selected. Edges selected by this value

are removed from further consideration when the procedure is repeated.
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4.4 SHAPE EXTRACTION PROCEDURES

4.4.1 Extraction of Significant Curvature Points

An essential task is decomposing an extracted edge into a sequence of sub-
contours based upon some shape fitting requirement, as in approximating a curve
by linear segments, polynomials, or splines. This involves extracting points of
significant orientation change or curvature. An example of a contour and

different linear approximations is shown in Figures 4-38 and 4-40.

Recursive line fitting is based upon evaluating the linear fit of a line relative
to a given curve using a point along the curve with maximum distance from the

* line segment. Such a point is used to generate two new line segments which are

each evaluated with respect to their points of maximal distance. This procedure
* is repeated, recursively, to each generated linear approximation until the linear

approximations are all within some distance of their associated curves. For a
closed contour, the initial points are selected to be immediately adjacent. One of

N these points is discarded when the final fit is achieved. Figure 4-36 shows the set

of extracted edges from ETL-Image-17 (Figure 4-28 in Section 4.2.7). Figure 4-37
* shows a selected set of these edges based upon average contrast. Figure 4-38

shows a selected edge from this set and the recursive line fits to it.

The other method is based upon approximating curvature at points by a
* local, iterative, procedure we developed for implementation in a parallel array

architecture [Lawton - 85]. The technique begins by associating an orientation

- value with each point along a contour. The orientation value may come directly
from the image gradient. The orientation value at each point is then updated by
averaging it with those of the immediately adjacent points. The number of itera-
tions of this averaging process corresponds to weighted evaluation of curvature
over different neighborhood sizes along a contour. Interesting points are then

extracted where significant changes and variations in orientation occur as
reflected by the neighboorhood difference measure. In its undirected scalar form,

* - this measure is the sum of the absolute differences between the orientation value
at a point and its immediate neighbors. The interesting points are the local max-

ima in this measure which also exceed some threshold. Figure 4-3ga-d shows the

positions of these points for a given connected contour with different amounts of
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averaging. Figure 4-40a-d shows the corresponding linear interpolation. Figure

4-41a-d shows the interpolated, smoothed contour from the resulting orientation

values. Figure 4-42a-d shows the orientation values along these contours for

different amounts of smoothing.

The shape of a contour is also described by the changes in orientation in

the sequence of linear segments along it. The histogram of orientation values

along the contour is useful as a statistical description of shape.

4.4.2 Chamfer-Based Shape Descriptions

Image Chamfering [Barrow - 78] is used in a variety of basic matching and

shape characterization applications. Chamfer processing associates with each

point in an image, an approximation to its minimal Euclidean distance from a

boundary. Figure 4-44 shows a set of boundaries extracted from the image in Fig-

ure 4-43. Figure 4-45 shows the contour lines of the chamfer generated from this.

As one moves from the river segment boundaries, the chamfer values increase.

Thus, the chamfer image could be used to determine the average distance of

U some object from the river. The chamfer image can be used to compute the

attributes of image structures: the average and variance of chamfer values along

-- a curve characterizes its distance and orientation to another image structure.

Chamfer generation is a two pass operation and requires local operations over 3x3

. neighborhoods similar to median filtering. Chamfering is used for matching

extracted edge structures for registering images using extracted contours or

predicted contours from a model. It is also a basic source of information for gen-
erating shape descriptions.

We have extended chamfer generation so that it associates not only the dis-

tance of an image point to the nearest image structure, but also the label of the

.: nearest image structure. We refer to this as the Chamfer-Label Image and it is

" related to techniques which take the Laplacian of a chamfered image to deter-

mine the medial axis transform. In Figure 4-46 we see two labeled regions, A and

B, and an image point P1. The chamfering labeling process associates the dis-

tance of a point to the nearest structure boundary, and also the label of that

r2 structure, as shown in the figure. Boundaries in the chamfer label image divide

an image into regions where each is associated with the image structure to which

• .any point in the region is closest. This is a discrete analog of the Voronoi
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Figure 4-41: Interpolated Smoothed Contour
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Diagram. Figure 4-47 shows a set of extracted boundaries from a river region

which are labeled. Figure 4-47 also shows the boundaries between the chamnfer

I labels generated from these two boundaries. Note how the elongated parallel

boundaries are indicated by a chamfer label boundary between them. That these

boundaries are parallel is indicated by the low variance in the chamfer values

along the chamfer label boundary between them.

This use of chamfer labeling generates an exoskeleton describing the rela-

tions between extracted regions or edges. It can be used to generate an inner-

* skeleton for a single region by breaking the region's boundary into subsegments

and associating a unique label with each subsegment. This yields a structure

similar to the medial axis transform [Blum - 67]. This skeleton associated with a

region is a rich source of shape descriptions, as in finding major axis and offshoots

* and their orientations. It is a multi-resolution shape description when the region

subsegments are formed using the techniques described for extracting significant

curvature points at different resolutions or distance tolerances with the recursive

line fitting procedure. Figure 4-48 shows the shape skeletons corresponding to

the extracted significant contour points at different resolutions.

4.4.3 Basic Shape Statistics

There are several basic shape measures which are associated with regions.

S Among these are:

9 Centroid

9 Bounding Rectangle

* Moments

0 Area

* Perimeter
0 Topology (number of holes)

*4.5 SEGMENTATION RULES

The application of the segmentation procedures is directed and imple-

mented by a set of segmentation rules. These rules are organized to be run in a

data-driven or model-directed fashion. These come in three general forms.

* * Extraction rules which specify a sequence of actions to extract a particular type
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of feature or image structure; recognition rules which determine when a particu-

lar structure or relationship exists; and grouping rules which generate a

hypothesized structure from some relation between selected image structures.

These basic rule types will be combined during application to produce a result

with some specific quality. Thus, a river tracking procedure could involve calling

an extraction type rule to pull out a particular type of image structure and then

M parameterizing a grouping rule to be sensitive to this type of structure.

A segmentation rule specifies:

9 The binding of rule variables to extracted image structures and

hypothesis.

*A sequence of operations to perform and the associated binding of rule

variables to image structures and hypothesis generated during rule appli-

I' cation.

9 A rule evaluation function to evaluate the- success of the rule.

e Hypothesis /Tasks generated as a result of the rule and how to initialize

their attributes (average shape of grouped regions).

Example segmentation rules are shown in Figure 4-49.

In general we found that simple region and edge extraction processes which

could be applied in a focused and flexible manner were best. Processing is then

Sbuilt out of sequences of these operations expressed as rules for extracting partic-

ular types of image structure.
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average contrast
similar region adjacencies

Global Edge Linking (tracking)
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Figure 4-49: Example Segmentation Rules
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Global Linear Focusing Rules

- look for similarly oriented
contours in this area

- look for intersections with
other areas associated with
other lines

r Continuity through an extracted area

I 0• I

Figure 4-49: Example Segmentation Rules (cont'd)
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5. SAR OBJECT KNOWLEDGE REPRESENTATION

The SAR Object Representation specifies the expected attributes and com-

ponents of objects and the relationships between objects. It is used to associate

object hypothesis with extracted image structures; to generate predictions for

instantiating other related objects, and for specifying the validation process for

instantiated hypothesis. The representation developed can be thought of as a

network consisting of a set of nodes with each node corresponding to a particular

object or object types, such as TERRAIN-AREA, FOREST-AREA, or LARGE-

RIVER-SEGMENT. Each node contains two different types of descriptions: a

-" declarative one describing the associated object in terms of its image properties

* and a procedural description, called a FINDER. The FINDER specifies how to

extract such an object from an image in terms of particular segmentation rou-

tines. Objects are related by four general types of links which specify relation-

ships and the inheritance/modification of attributes: IS-A,

SIMILARITY/DIFFERENCE, COMPATIBILITY, and PART-OF relations

3 [Tsostos-80, Tsostos-841. Links are similar to nodes in that they have procedural

and declarative attachments for describing and extracting the specified relation-

* ship.

The declarative object descriptions associated with nodes are used to match

objects to image structures, especially during the initial instantiation of

hypotheses. Once an object is instantiated as a hypothesis, the various links

associated with it in the representation network are used to direct the instantia-

tion of related objects and the ascription of certainty to the particular object

instantiation. The certainty of an object hypothesis is reflected by the number of

anticipated relationships for which there is evidence as determined by the links

associated with the object which are themselves instantiated. For example, when

- an object is instantiated, its similarity/difference links are used to determine

other potential objects which could correspond to the same set of structures but

must be different in some specified way. Multiple objects can be instantiated

with respect to the same sets of image structures.

The general structure of the declarative part of the object nodes consist of

a set of specified queries over the ISDB and the HTDB and the expected results
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or range of results to these queries. Often, as in implementing a feature vector

approach, these queries will correspond directly to simple attributes of extracted

image structures. Thus, a BIG-RIVER-SEGMENT is described as a large dark le

region, elongated with dominant parallel structure, and low contrast. These pro-

perties correspond directly to region attributes in the ISDB. The declarative

object descriptions will also often correspond to the type of interesting structures

which the segmentation knowledge source is trying to produce. The FINDERS

"" specify for a given object, the types of segmentation procedures which are neces-

sary for extracting it. These direct the segmentation processes to extract the

related image structures.

Objects are related by four different types of links: IS-A, SIMILARITY-

DIFFERENCE, COMPATIBILITY, and PART-OF. Each of these links contains

declarative attributes and procedural attachments. The links are also instan-

tiated during the interpretation process as instances of relations between objects

in the HTDB. The properties of these links are:

IS-A: specifies the classification of objects and the structured inheritance of pro-

perties. The IS-A Links relating different types of terrain and water bodies is

shown in Figures 5-1 and 5-2.

SIMILARITY/DIFFERENCE: specifies that two objects are alike with

SIrespect to some set of attributes or relations but different with respect to others.

This isolates critical distinguishing features such as a river being like a road,

except for different inherited network properties, different average curvature, and

so forth. This link specifes the set of attributes, how they should differ, and par-

-- ticular programs to perform the disambiguation. Figure 5-1 shows the

* .similarity/difference links between the FORESTED-TERRAIN area and the

URBAN-TERRAIN area. Declaratively, this link contains information about the

'. different types of texture and contrast between the terrain types. In general, sets

of objects having the same parent through IS-A Links will be interconnected by -;

• Similarity/Difference Links to specify their distinguishing characteristics. This

consists of the specific attributes which must be found to distinguish the objects

or, procedurally, it can consist of procedures to be executed to evaluate the

potential conflict between the objects.

- COMPATIBILITYs specifies allowable and expected relations between
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objects. There are two basic types: SPATIAL-COMPATIBILITY andj
SIMULTANEOUS-COMPATIBILITY. SPATIAL-COMIPATIBIELITY specifies
allowable spatial relations between instances of objects such as intersection, align-

ment, contained-in, adjacent-to, and connected. SIMULTANEOUS-

COMPATIBILITY specifies that a given image area can have multiple object

types associated with it, as in a road object being simultaneous ly-compatible with

an urban terrain area. The compatibility links can specify other objects which

must be present as in the ocean being compatible with a land mass if a shoreline
can be found. Compatibility links are directed so that one object can be compa-

tible with another, but not the opposite. This is so that the generation of predic-
tions along compatibility links can go in one direction if so desired. This is so

one type of object always implies another type of object, but the reverse is not

always true. The finders associated with compatibility links allow for contextu-

ally specifying relations between objects.

Compatibility has an optional numerical range associated with it from -1

(incompatible) to 0 (independent occurrence of objects) to 1 (highly compatible).

PART-OF: specifies the relations between necessary components of an object.

Our representation is generally two dimensional with three dimensional
features, like shadows, being parameterized with respect to object height to

derive two dimensional image characteristics. Three dimensional informationS could be incorporated in two other ways with very different system requirements.
In one form, we assume a relatively precise three-dimensional terrain model asso- -

ciated with the images that are being interpreted. It is then possible to syntheti-

cally generate expected image properties and match these against an image. In

* this case, even though the model is three dimensional, it leads directly to image

specific relationships. The generation of the predicted image features is

automatic given an adequate sensor model and requires no inference processing.

In the other form of three dimensional world models, there is a general geometric

description of world objects and no a prior information specific to the image
* - being interpreted. In this case, the system generates interpretations by manipu-

lating these abstract three-dimensional models. Work to date on this in corn-
puter vision has found this to be enormously difficult. Additionally, the results of

this inference processing take the form of compiling from a three-dimensional
object to two-dimensional procedures. K
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This general format of this representation is compatible with several
different evidential accrual schemes involving semantic networks expressing

* object interrelations, such as the Bayesian based scheme found in PROSPEC-

TOR [Duda - 78] and the Force Structure Analysis subsystem found in ADRIES

[AI&DS - 84], or the Relaxation based approach over certainty values associated

". with objects found in the ALVEN system [Tsotsos - 80]. The major question

m concerning these techniques are whether they can converge to an effective solu-
tion when dealing with large numbers of interrelated instantiated hypotheses, and

how a priori compatibilities are determined and numerically evaluated.
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6. SUMMARY AND FUTURE PLANSI

The goal of this effort has been to establish the feasibility of automatically

extracting linear features from radar imagery. The work has focused primarily
on defining a general system architecture and considering key capabilities and

techniques within that framework. Numerous basic segmentation procedures
were considered and evaluated (including both existing algorithms and new tech-

niques developed under this contract). The results concretely show the ability to
extract image features. An image structure data base was implemented to

demonstrate the ability to work with and manipulate symbolic representations of
* image objects. These capabilities were used interactively to determine the

requirements of other parts of the system.

The results of this effort have been largely encouraging. The overall system
concept appears to be robust and to provide the required capabilities. A
sufficiently rich set of techniques were identified that perform well on SAR

* imagery to support automated analysis.

A full implementation of an automated Linear Feature Extraction System is
planned as part of a Phase II effort in the Small Business Innovative Research

(SBIR) program. That implementation will present the concept of a SAR
U Feature Interpretation Workstation. The workstation will support three basic

uses. The first is for the interactive exploration or processing of an image. The
second is for the online development of processing algorithms. The third is to
interactively develop an autonomous vision system by generating new rules and .

editing the world object representation.

The future system will continue to be implemented in a LISP machine

* environment. It will potentially utilize an existing expert system framework and
development tool such as MIRS [MIRS - 84], KEE [KEE - 85], or SCHEMER

[SCHEMER - 851 for implementing the rule-based SAR Object Knowledge
Sources and the Segmentation Knowledge Source.

The development effort will continue to be an evolutionary one. Represen-
tation, will begin by implementing the declarative aspects of the object descrip-
tions corresponding to feature vectors. This will be followed by the



implementation of Finders related in the network. Technique development willI
involve testing and adding new segments, edge finders, etc. to the system's range
of capabilities and evaluating situations in which their use is most appropriate.

L.
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